Distinct miRNA profiles in normal and gastric cancer myofibroblasts and significance in Wnt signaling

Wang, Liyi, Steele, Islay, Kumar, Jothi Dinesh, Dimaline, Rod, Jithesh, Puthen V, Tiszlavicz, Laszlo, Reisz, Zita, Dockray, Graham J and Varro, Andrea
(2016) Distinct miRNA profiles in normal and gastric cancer myofibroblasts and significance in Wnt signaling. AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 310 (9). G696-G704.

[thumbnail of Wang et al.pdf] Text
Wang et al.pdf - Published version

Download (2MB)


Stromal cells influence epithelial function in both health and disease. Myofibroblasts are abundant stromal cells that influence the cellular microenvironment by release of extracellular matrix (ECM) proteins, growth factors, proteases, cytokines, and chemokines. Cancer-associated myofibroblasts (CAMs) differ from adjacent tissue (ATMs) and normal tissue myofibroblasts (NTMs), but the basis of this is incompletely understood. We report now the differential expression of miRNAs in gastric cancer CAMs. MicroRNA arrays identified differences in the miRNA profile in gastric and esophageal NTMs and in CAMs from stomach compared with NTMs. miR-181d was upregulated in gastric CAMs. Analysis of differentially regulated miRNAs indicated an involvement in Wnt signaling. Examination of a microarray data set then identified Wnt5a as the only consistently upregulated Wnt ligand in gastric CAMs. Wnt5a stimulated miR-181d expression, and knockdown of miR-181d inhibited Wnt5a stimulation of CAM proliferation and migration. Analysis of miR-181d targets suggested a role in chemotaxis. Conditioned medium from CAMs stimulated gastric cancer cell (AGS) migration more than that from ATMs, and miR-181d knockdown reduced the effect of CAM-CM on AGS cell migration but had no effect on AGS cell responses to ATM conditioned media. The data suggest that dysregulation of miRNA expression in gastric CAMs, secondary to Wnt5a signaling, accounts at least in part for the effect of CAMs in promoting cancer cell migration. stromal cells have emerged in recent years as important determinants of epithelial cell function in the gastrointestinal mucosa in health and disease (7, 23, 25). There are multiple stromal cell types, including inflammatory and immune cells, fibroblasts, pericytes, and myofibroblasts. The latter are sparse in many tissues, but in the gut there is normally a sheath of myofibroblasts that surrounds intestinal crypts and gastric glands. They may arise from activation of fibroblasts, for example, by TGFβ, by transdifferentiation of mesenchymal stem cells (26), or by epithelial-mesenchymal transition (20). Physiologically, they play a role in wound healing. They may also influence tumor progression (26). Myofibroblasts are often operationally defined as expressing α-smooth muscle actin (SMA), vimentin, and fibroblast activation protein and are negative for cytokeratin and usually desmin (7). An emerging body of evidence from multiple experimental platforms supports the idea that there are marked differences between different myofibroblast populations in both health and disease. For example, microarray studies reveal differences between myofibroblasts from different regions of the normal gastrointestinal tract (12). Moreover, there are marked differences in cancer at the levels of transcripts, proteins, and functions. Previously, we showed that myofibroblasts from gastric or esophageal cancer differ from their counterparts in adjacent tissue with evidence that myofibroblasts from advanced gastric tumors promote more aggressive phenotypes in cancer cells (3, 13, 14, 17). We also showed that esophageal cancer-associated myofibroblasts (CAMs) exhibit increased secretion of the chemokine-like peptide chemerin, which plays a role in mesenchymal stem cell recruitment (17). MicroRNAs (miRNAs) are short RNAs of ∼22 nucleotides that act posttranscriptionally to determine mRNA stability and translation (1). They regulate an impressive diversity of biological processes and importantly may contribute to cancer initiation and progression. In stomach and esophagus, previous studies have identified differentially expressed miRNAs (8, 11, 19). However, it is not known whether miRNAs contribute to the differences in function of different myofibroblast populations. In view of differences in the secretomes and proteomes of gastric or esophageal cancer-derived myofibroblasts compared with their respective adjacent tissue myofibroblasts (ATMs), in the present study we sought to determine whether there might also be differences in their miRNA expression profiles compared both with each other and with normal tissue myofibroblasts (NTMs). We now report that gastric and esophageal NTM miRNA profiles are readily distinguishable, that gastric CAMs differ from their respective NTMs in their miRNA profiles, and that Wnt5a (which is upregulated in gastric CAMs) may act in part via miR-181d to influence mesenchymal-epithelial signaling.

Item Type: Article
Uncontrolled Keywords: cancer, stomach, esophagus, myofibroblast, miR-181d, Wnt5a
Depositing User: Symplectic Admin
Date Deposited: 08 Jan 2019 15:48
Last Modified: 19 Jan 2023 01:07
DOI: 10.1152/ajpgi.00443.2015
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3030915