How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting



Panagides, Nadya, Jackson, Timothy NW, Ikonomopoulou, Maria P, Arbuckle, Kevin ORCID: 0000-0002-9171-5874, Pretzler, Rudolf, Yang, Daryl C, Ali, Syed A, Koludarov, Ivan, Dobson, James, Sanker, Brittany
et al (show 16 more authors) (2017) How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. TOXINS, 9 (3). E103-.

Access the full-text of this item by clicking on the Open Access link.
[img] Text
How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting.pdf - Published version

Download (13MB) | Preview

Abstract

The cytotoxicity of the venom of 25 species of Old World elapid snake was tested and compared with the morphological and behavioural adaptations of hooding and spitting. We determined that, contrary to previous assumptions, the venoms of spitting species are not consistently more cytotoxic than those of closely related non-spitting species. While this correlation between spitting and non-spitting was found among African cobras, it was not present among Asian cobras. On the other hand, a consistent positive correlation was observed between cytotoxicity and utilisation of the defensive hooding display that cobras are famous for. Hooding and spitting are widely regarded as defensive adaptations, but it has hitherto been uncertain whether cytotoxicity serves a defensive purpose or is somehow useful in prey subjugation. The results of this study suggest that cytotoxicity evolved primarily as a defensive innovation and that it has co-evolved twice alongside hooding behavior: once in the <i>Hemachatus + Naja</i> and again independently in the king cobras (<i>Ophiophagus</i>). There was a significant increase of cytotoxicity in the Asian <i>Naja</i> linked to the evolution of bold aposematic hood markings, reinforcing the link between hooding and the evolution of defensive cytotoxic venoms. In parallel, lineages with increased cytotoxicity but lacking bold hood patterns evolved aposematic markers in the form of high contrast body banding. The results also indicate that, secondary to the evolution of venom rich in cytotoxins, spitting has evolved three times independently: once within the African <i>Naja</i>, once within the Asian <i>Naja</i>, and once in the <i>Hemachatus</i> genus. The evolution of cytotoxic venom thus appears to facilitate the evolution of defensive spitting behaviour. In contrast, a secondary loss of cytotoxicity and reduction of the hood occurred in the water cobra <i>Naja annulata</i>, which possesses streamlined neurotoxic venom similar to that of other aquatic elapid snakes (e.g., hydrophiine sea snakes). The results of this study make an important contribution to our growing understanding of the selection pressures shaping the evolution of snake venom and its constituent toxins. The data also aid in elucidating the relationship between these selection pressures and the medical impact of human snakebite in the developing world, as cytotoxic cobras cause considerable morbidity including loss-of-function injuries that result in economic and social burdens in the tropics of Asia and sub-Saharan Africa.

Item Type: Article
Uncontrolled Keywords: cytotoxin, cobra, Hemachatus, Naja, Ophiophagus, Elapidae, evolution, antipredator defense
Depositing User: Symplectic Admin
Date Deposited: 15 May 2019 08:56
Last Modified: 13 Feb 2024 12:56
DOI: 10.3390/toxins9030103
Open Access URL: https://doi.org/10.3390/toxins9030103
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3041400