Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study



Colon-Gonzalez, J Felipe, Sewe, Maquins Odhiambo, Tompkins, M Adrian, Sjodin, Henrik, Casallas, Alejandro, Rocklov, Joacim, Caminade, Cyril ORCID: 0000-0002-3846-7082 and Lowe, Rachel
(2021) Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. LANCET PLANETARY HEALTH, 5 (7). E404-E414.

[img] Text
Colon_Gonzalez_LPH_2021.pdf - Published version

Download (3MB) | Preview

Abstract

<h4>Background</h4>Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient.<h4>Methods</h4>Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways.<h4>Findings</h4>We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas.<h4>Interpretation</h4>Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission.<h4>Funding</h4>UK Space Agency, Royal Society, UK National Institute for Health Research, and Swedish Research Council.

Item Type: Article
Uncontrolled Keywords: Animals, Humans, Malaria, Cities, Disease Outbreaks, Hot Temperature, Climate Change
Divisions: Faculty of Health and Life Sciences
Faculty of Health and Life Sciences > Institute of Infection, Veterinary and Ecological Sciences
Depositing User: Symplectic Admin
Date Deposited: 08 Jul 2021 09:53
Last Modified: 14 Mar 2024 20:21
DOI: 10.1016/s2542-5196(21)00132-7
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3129275