A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater



Kevill, Jessica L, Pellett, Cameron, Farkas, Kata, Brown, Mathew R, Bassano, Irene, Denise, Hubert, McDonald, James E, Malham, Shelagh K, Porter, Jonathan, Warren, Jonathan
et al (show 4 more authors) (2022) A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. SCIENCE OF THE TOTAL ENVIRONMENT, 808. 151916-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0-400 NTU), surfactant load (0-200 mg/l), and storage temperature (5-20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and <10% with IP in turbid samples, whilst viral recoveries for samples with additional surfactant were between 0-18% for AS and 0-5% for IP. Turbidity and sample storage temperature combined had no significant effect on SARS-CoV-2 recovery (p > 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples.

Item Type: Article
Uncontrolled Keywords: RNA detection, qRT-PCR, COVID-19, Faecal indicator virus, Wastewater concentration
Divisions: Faculty of Health and Life Sciences
Faculty of Health and Life Sciences > Institute of Infection, Veterinary and Ecological Sciences
Depositing User: Symplectic Admin
Date Deposited: 03 Feb 2022 15:22
Last Modified: 18 Jan 2023 21:14
DOI: 10.1016/j.scitotenv.2021.151916
Open Access URL: https://doi.org/10.1016/j.scitotenv.2021.151916
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3148131