Side‐Chain Molecular Engineering of Triazole‐Based Donor‐Acceptor Polymeric Photocatalysts with Strong Electron Push‐Pull Interactions



Luo, Zhipeng, Chen, Xiaowen, Hu, Yuanyuan, Chen, Xiong ORCID: 0000-0003-2878-7522, Lin, Wei ORCID: 0000-0002-5046-4765, Wu, Xiaofeng ORCID: 0000-0001-5549-8836 and Wang, Xinchen ORCID: 0000-0002-2490-3568
(2023) Side‐Chain Molecular Engineering of Triazole‐Based Donor‐Acceptor Polymeric Photocatalysts with Strong Electron Push‐Pull Interactions. Angewandte Chemie, 135 (30).

[thumbnail of Manuscript-R1.docx] Text
Manuscript-R1.docx - Author Accepted Manuscript
Available under License Creative Commons Attribution.

Download (8MB)

Abstract

<jats:title>Abstract</jats:title><jats:p>A new series of donor‐acceptor (D‐A)‐type semiconductive polymers were generated by the integration of electron‐deficient alkyl chain anchored triazole (TA) moieties and electron‐rich pyrene units into the polymer skeleton. The polymer series demonstrated satisfactory light‐harvesting ability and suitable band gaps. In the series, polymer P‐TAME benefits from a minimized exciton binding energy, strongest D‐A interaction, and favorable hydrophilicity, affording an outstanding photocatalytic H<jats:sub>2</jats:sub> evolution rate of ca. 100 μmol h<jats:sup>−1</jats:sup> (10 mg polymer, AQY<jats:sub>420 nm</jats:sub>=8.9 %) and H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> production rate of ca. 190 μmol h<jats:sup>−1</jats:sup> (20 mg polymer) under visible‐light irradiation, which is superior to most currently reported polymers. All polymers in the series can mediate water oxidation reactions to evolve O<jats:sub>2</jats:sub>. Thus, these TA‐based polymers open up a new avenue toward tailor‐made efficient photocatalysts with broad photocatalytic activities.</jats:p>

Item Type: Article
Uncontrolled Keywords: 7 Affordable and Clean Energy
Depositing User: Symplectic Admin
Date Deposited: 01 May 2024 09:38
Last Modified: 01 May 2024 09:38
DOI: 10.1002/ange.202304875
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3180705