A 403 MHz Wireless Power Transfer System With Tuned Split-Ring Loops for Implantable Medical Devices



Wang, Jingchen, Lim, Eng Gee ORCID: 0000-0003-0199-7386, Leach, Mark Paul, Wang, Zhao, Pei, Rui, Jiang, Zhenzhen ORCID: 0000-0003-3306-883X and Huang, Yi ORCID: 0000-0001-7774-1024
(2022) A 403 MHz Wireless Power Transfer System With Tuned Split-Ring Loops for Implantable Medical Devices. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 70 (2). pp. 1355-1366.

[img] Text
A_403_MHz_Wireless_Power_Transfer_System_with_Tuned_Split-ring_Loops_for_Implantable_Medical_Devices.pdf - Author Accepted Manuscript

Download (1MB) | Preview

Abstract

A near-field wireless power transfer (WPT) system for implantable medical devices, such as pacemakers, is proposed. Operating at 403 MHz within the medical implants communication service (MICS) band, the WPT link constitutes a primary loop to be based outside the body as a transmitter and an implantable loop with a single-turn as a receiver. Simulation and experimental results show that the proposed link offers good power transfer efficiency (PTE) performance. The maximum measured PTE of the proposed link is 57.9% at a transfer distance of 6 mm through 1 mm of air and 5 mm of body tissue. The maximum input power that can be supplied to stay within specific absorption rate safety guidelines is 159 mW. A rectifying circuit is designed to convert 403 MHz RF signals to dc for a 1.5 kΩ load with a measured conversion efficiency of 73.2%. The measured end-to-end PTE of the proposed WPT system is 42.4%.

Item Type: Article
Uncontrolled Keywords: Implantable medical devices, magnetic resonance coupling (MRC), near-filed, split-ring loops, wireless power transfer (WPT)
Divisions: Faculty of Science and Engineering > School of Electrical Engineering, Electronics and Computer Science
Depositing User: Symplectic Admin
Date Deposited: 17 Feb 2022 10:13
Last Modified: 15 Mar 2024 13:38
DOI: 10.1109/TAP.2021.3111520
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3149106