Effects of Human RelA Transgene on Murine Macrophage Inflammatory Responses



Papoutsopoulou, Stamatia, Morris, Lorna, Bayliff, Andrew, Mair, Thomas, England, Hazel, Stagi, Massimiliano ORCID: 0000-0002-5827-902X, Bergey, Francois, Alam, Mohammad Tauqeer, Sheibani-Tezerji, Raheleh, Rosenstiel, Philip
et al (show 3 more authors) (2022) Effects of Human RelA Transgene on Murine Macrophage Inflammatory Responses. BIOMEDICINES, 10 (4). 757-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., <i>Fos</i> and <i>Cxcl10</i>. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.

Item Type: Article
Uncontrolled Keywords: macrophage, NF kappa B, RelA(p65), inflammation, lipid A, lipopolysaccharide, toll-like receptor, tumour necrosis factor
Divisions: Faculty of Health and Life Sciences
Faculty of Health and Life Sciences > Institute of Infection, Veterinary and Ecological Sciences
Depositing User: Symplectic Admin
Date Deposited: 06 Apr 2022 14:20
Last Modified: 18 Jan 2023 21:05
DOI: 10.3390/biomedicines10040757
Open Access URL: https://doi.org/10.3390/biomedicines10040757
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3152291