Wake transitions and steady z-instability of an Ahmed body in varying flow conditions



Fan, Yajun ORCID: 0000-0002-6304-1606, Parezanovic, Vladimir and Cadot, Olivier ORCID: 0000-0001-7323-6418
(2022) Wake transitions and steady z-instability of an Ahmed body in varying flow conditions. JOURNAL OF FLUID MECHANICS, 942. a22-.

[img] Text
Fan_etal_accepted_JFM_2022.pdf - Author Accepted Manuscript

Download (4MB) | Preview

Abstract

<jats:p>The paper investigates experimentally the flow past a flat-back, taller than wide Ahmed body having rectangular base aspect ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline2.png" /> <jats:tex-math>$H/W=1.11$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the context of ground vehicle aerodynamics. Parametric studies at Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline3.png" /> <jats:tex-math>$2.1\times 10^5$</jats:tex-math> </jats:alternatives> </jats:inline-formula> explore the sensitivity of the aerodynamic force and body pressure distribution with respect to varying flow conditions defined from variable ground clearance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline4.png" /> <jats:tex-math>$C$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (taken at mid-distance from the front and rear axles of the body), pitch angle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline5.png" /> <jats:tex-math>$\alpha$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and yaw angle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline6.png" /> <jats:tex-math>$\beta$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (equivalent to a crosswind). Two-dimensional parametric maps in the parametric spaces <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline7.png" /> <jats:tex-math>$(\beta,C)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline8.png" /> <jats:tex-math>$(\beta,\alpha )$</jats:tex-math> </jats:alternatives> </jats:inline-formula> are obtained for parameter ranges covering real road vehicle driving conditions. The study of the base pressure gradient reveals non-trivial and sharp transitions identified as significant changes of near wake orientation in both parametric spaces. All unsteady transitions correspond to fluctuation crises of the vertical gradient component only. These transitions are summarized in phase diagram representations. Both phase diagrams in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline9.png" /> <jats:tex-math>$(\beta,C)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline10.png" /> <jats:tex-math>$(\beta,\alpha )$</jats:tex-math> </jats:alternatives> </jats:inline-formula> parametric spaces can be unified at large yaw in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline11.png" /> <jats:tex-math>$(\beta,C_r)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> space, where the rear clearance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline12.png" /> <jats:tex-math>$C_r$</jats:tex-math> </jats:alternatives> </jats:inline-formula> separating the lower edge of the base from the ground is a simple function of the pitch <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline13.png" /> <jats:tex-math>$\alpha$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the clearance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline14.png" /> <jats:tex-math>$C$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The impacts of the wake transitions are clearly identified in the base drag, drag, lift and side force coefficients. The contribution of the steady near wake <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline15.png" /> <jats:tex-math>$z$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-instability (Grandemange <jats:italic>et al.</jats:italic>, <jats:italic>Phys. Fluids</jats:italic>, vol. 25, 2013<jats:italic>a</jats:italic>, pp. 95–103) is assessed by repeating the sensitivity analysis with a rear cavity. As reported previously, the rear cavity suppresses the steady instability by symmetrizing the wake. A domain for the existence of the instability is finally proposed in the attitudes map <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022003822_inline16.png" /> <jats:tex-math>$(\beta,\alpha )$</jats:tex-math> </jats:alternatives> </jats:inline-formula> defined from regions where the mean lateral force coefficients are significantly decreased by the presence of the rear cavity. In addition, it is found that the steady instability forces the wake to be less unsteady for all attitudes that do not correspond to unsteady transitions.</jats:p>

Item Type: Article
Uncontrolled Keywords: bifurcation, shear-flow instability, wakes
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Symplectic Admin
Date Deposited: 13 Jun 2022 08:37
Last Modified: 15 Mar 2024 14:05
DOI: 10.1017/jfm.2022.382
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3156217