Structural dynamics of a dowelled-joist timber floor in the low-frequency range modelled using finite element simulation



Filippoupolitis, M, Hopkins, C ORCID: 0000-0002-9716-0793, Voeltl, R, Schanda, U, Mahn, J and Krajci, L
(2017) Structural dynamics of a dowelled-joist timber floor in the low-frequency range modelled using finite element simulation. ENGINEERING STRUCTURES, 148. pp. 602-620.

[img] Text
Filippoupolitis et al FEM modelling of dowelled-joist timber floor Engineering Structures 2017.docx - Author Accepted Manuscript

Download (9MB)

Abstract

This paper concerns the development and validation of Finite Element Methods (FEM) to simulate the dynamic response of a dowelled-joist timber floor. This is a solid floor comprised of timber joists connected using timber dowels with individual assemblies connected using inclined metal screws. The focus is on the structural dynamics in the low-frequency range up to 200 Hz which is the relevant range for impact sound insulation and vibration serviceability. Dowel connections between the joists that formed each assembly were modelled using either rigid or spring connectors in the FEM models. The validation against experimental modal analysis showed that both approaches were valid in terms of the eigenfrequencies, Modal Assurance Criterion (MAC) and the spatial-average velocity with point excitation. Whilst the FEM model with spring connectors had a higher number of correlated modes in the MAC analysis, this required removal of many spurious modes before predicting the response. The validated models were used to demonstrate the potential in predicting assessment parameters for vibration serviceability that are contained in EN 1995-1-1 (Eurocode 5). This predictive approach to the evaluation of vibration serviceability has the advantage in that it can be used for non-standard timber floors with non-standard boundary conditions or floor plans.

Item Type: Article
Additional Information: publisher: Elsevier articletitle: Structural dynamics of a dowelled-joist timber floor in the low-frequency range modelled using finite element simulation journaltitle: Engineering Structures articlelink: http://dx.doi.org/10.1016/j.engstruct.2017.07.009 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.
Uncontrolled Keywords: Timber floor, Dowel connections, Vibration, Modal analysis, Vibration serviceability, Eurocode 5
Depositing User: Symplectic Admin
Date Deposited: 02 Oct 2017 06:32
Last Modified: 19 Jan 2023 06:53
DOI: 10.1016/j.engstruct.2017.07.009
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3009721